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a b s t r a c t

In some retrospective observational studies, the subject is asked to recall the age at a partic-
ular landmark event. The resulting datamay be partially incomplete because of the inability
of the subject to recall. This type of incompleteness may be regarded as interval censoring,
where the censoring is likely to be informative. The problem of fitting Cox’s relative risk
regression model to such data is considered. While a partial likelihood is not available, a
method of semi-parametric inference of the regression parameters as well as the baseline
distribution is proposed. Monte Carlo simulations show reasonable performance of the re-
gression parameters, compared to Cox estimators of the same parameters computed from
the complete version of the data. The proposed method is illustrated through the analysis
of data on age at menarche from an anthropometric study of adolescent and young adult
females in Kolkata, India.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Retrospective studies on a landmark event can produce dichotomous data on the current status of an individual (whether
or not the event has occurred till the day of observation). From the perspective of the time to event, these data can be
regarded as left or right censored. In some retrospective studies, the subject is asked to recall the time of the landmark
event, in case it has already taken place. Such retrospective data can be incomplete because of the possibility that the time
is forgotten. Sometimes the subject may be able to specify only a range for the time-to-event. For some other subjects, the
event may be found not to have happened till the time of visit. Thus, data arising from this kind of retrospective studies are
interval-censored. However, the chance of recall may depend on the time span between the occurrence of the event and the
time of interview. For instance, between two young adult females interviewed at the same age, the one having experienced
menarche more recently may have a higher chance of recalling the date. Thus, the censoring mechanism in this set-up is
likely to be informative.Mirzaei et al. (2015) andMirzaei and Sengupta (2015) have proposed parametric and nonparametric
methods of likelihood based inference, when the data are subjected to informative interval censoring of this type. They have
shown theoretically as well as through simulation that estimators of survival function that ignore the informative nature of
censoring can have large bias even when the sample size is large (Mirzaei et al., 2015). On the other hand, the problem of
regression with the above type of censored data has not been addressed yet.

The relative risk regression model, also known as the proportional hazards model, is widely used in the analysis of
event time data with covariates. The method of analysis proposed by Cox (1972) can accommodate right-censored data
which are usual in survival problems, and left-truncated data which arise when there are delayed entries in a cohort
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(Breslow et al., 1983). Other models which are used for more complex observation schemes include the accelerated fail-
ure time (AFT) model (Wei, 1992), the additive hazard regression model (Klein andMoeschberger, 2003), proportional odds
ratio model (Dabrowska and Doksum, 1988) and so on (Vonta, 1996). There has also been some work on more general
regression models for survival data, such as single index regression models (Chaudhuri, 2007) and models with random
effect/frailty (Wienke, 2010).

Discrete-time regression models for right-truncated data have been developed and applied in the analysis of AIDS in-
cidence and induction time distributions (Kalbfleisch and Lawless, 1991; Gross and Huber-Carol, 1992). Finkelstein (1986)
and Finkelstein et al. (1993) discussedmethods for fitting a discrete proportional hazards model for the case where the data
are either interval-censored or right-truncated. In both cases, a score test was developed for testing the hypothesis of a zero
regression coefficient. Tu et al. (1993) discussed a discrete proportional hazards model and an associated EM algorithm for
data that are censored as well as truncated. Alioum and Commenges (1996) discussed a method for fitting a relative risk
regression model for arbitrarily interval censored data. Their method assumes the censoring to be non-informative.

DeMasi et al. (1997) and Tanaka and Rao (2005) considered the regression problem for informatively censored data. Their
model treats informative censoring as a type of risk in a competing risks setup, where the subject experiences two types of
mutually exclusive events. This set-up is not meant to model the informative censoring found in recall data.

In this paper, we consider regression under Cox’s model for the special type of informatively censored data arising from
uncertainly recalled event time in a retrospective study. In Section 2, we develop a semiparametric maximum likelihood
estimator of the regression coefficients under the model. In Section 3, we report results of a simulation study of the per-
formance of the proposed maximum likelihood estimator. Section 4 illustrates this method with data on menarcheal age of
adolescent and young adult females, collected during the course of a project undertaken by the Indian Statistical Institute,
Kolkata. Proofs of all the results are given in Appendix.

2. Model and inference

2.1. Model

Consider a subject having time of occurrence of the landmark event Ti, which is a single sample from a distribution Fi
with density fi and support [tmin, tmax], for i = 1, . . . , n. Let these subjects be interviewed at times S1, . . . , Sn ∈ [tmin, tmax],
respectively. Suppose Ui is the unobservable time that the ith subject would take to forget the epoch of his/her landmark
event. For the sake of simplicity, we assume that when the subject forgets the epoch, there is no recollection of an
approximate range of time also. There are observable indicators δi and εi of the events Ti ≤ Si and Ui > Si − Ti > 0,
respectively. We assume that U1, . . . ,Un are samples from a distribution with distribution function π , and that these are
independent of both Ti and Si. It follows that, given Si and Ti, the non-recall probability depends on the time elapsed since
the landmark event as

P(εi = 0|Ti = t, Si = s) = π(s − t), s > t. (1)

According to this model, the likelihood, conditional on the ages at interview, is

n
i=1

[F̄i(Si)]1−δi

{fi(Ti)(1 − π(Si − Ti))}εi

 Si

0
fi(u)π(Si − u)du

1−εi
δi
. (2)

Here the informativeness of the censoring mechanism is captured through the function π . If π is a constant, then the
likelihood (2) becomes a multiple of the likelihood for non-informatively left- or right censored data with possibility of
no censoring. As a further special case, if π = 1, then the likelihood (2) simplifies to the likelihood for dichotomous data. If
π = 0, i.e., there is perfect recall with probability 1, then εi = 1 for all i such that δi = 1, and the likelihood reduces to that
for right-censored data.

Let Zi be the r-dimensional vector of covariates, assumed to be independent of both Si and Ui. Note that the distribution
of Ti would depend on Zi. Under Cox’s relative risk regressionmodel, the probability of the individual i, with covariate vector
Zi, having the event after time t is

F̄i(t) = [F̄0(t)]exp(β
T Zi), (3)

where F̄0 is the baseline survival function, assumed to have a density.

2.2. Identifiability

Before embarking on developing amethod of estimation, we need to check the identifiability of β, F0 andπ . By substitut-
ing (3) in the likelihood (2), after dropping the subscript i for simplicity and following Theorem 1 ofMirzaei et al. (2015), one
can show that a typical factor in the product likelihood is equal to the conditional density of the observable vector (V , δ),
given S and Z , where V = (S − T )ε. The conditional density is written alternatively as
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h(v, δ|s, z;β) =



F̄0(s)exp(β
T z) if v = 0 and δ = 0, s

0
−

d
du


F̄0(u)exp(β

T z)

π(s − u)du if v = 0 and δ = 1,

−
d
dv


F̄0(s − v)exp(β

T z)

(1 − π(v)) if v > 0 and δ = 1,

0 otherwise.

(4)

Among the unknown parameters β, F0 and π , the interest lies mainly in β , and possibly in F0. We address the question as
to whether β, F0 and π are identifiable from h, in the next theorem.

Theorem 1. Suppose, for any number τ in the support of F0, the model (4) holds for some s > τ , and for z = 0 as well as for
any r linearly independent values of the vector z, where r is the dimension of z. Then the parameters β, F0 and π are identifiable
from h under this model.

We now proceed with the estimation problem, after assuming that the distribution of the covariate vector ensures the iden-
tifiability of all the unknown parameters.

2.3. Piecewise constant non-recall probability

The integral contained in the likelihood (2) makes it difficult to maximize. For the sake of mathematical tractability, we
now assume that π is a piecewise constant function of the form

π(x) = b1I(x1 < x ≤ x2)+ b2I(x2 < x ≤ x3)+ · · · + bkI(xk < x < ∞), (5)

where the jump points satisfy the relations 0 = x1 < x2 < · · · < xk, and the coefficients satisfy the relations
0 < b1 < b2 < · · · < bk ≤ 1, so that π is a non-decreasing function.

In view of (5), the likelihood (2) reduces to

L =

n
i=1

[F̄i(Si)]1−δi

fi(Ti)1 −

k
l=1

blI

Wl+1(Si) < Ti ≤ Wl(Si)

εi

·


k

l=1

bl

Fi(Wl(Si))− Fi(Wl+1(Si))

1−εi
δi , (6)

where Wl(Si) = (Si − xl) ∨ tmin for l = 1, . . . , k andWk+1(Si) = tmin, i = 1, 2, . . . , n. Note that

tmin = Wk+1(Si) ≤ Wk(Si) ≤ Wk−1(Si) ≤ · · · ≤ W1(Si). (7)

Depending on the value of Si, some of the above inequalities may in fact be equalities. Specifically, if l is an index such that
Si − xl+1 ≤ tmin < Si − xl then tmin = Wk+1(Si) = · · · = Wl+1(Si). The remaining inequalities would be strict.

The likelihood (6) can be rewritten as

L =

n
i=1

[F̄0(Si)exp(β
T Zi)]1−δi

F̄0(Ti−)exp(βT Zi) − F̄0(Ti)exp(β
T Zi)


·


1 −

k
l=1

blI

Wl+1(Si) < Ti ≤ Wl(Si)

εi

·


k

l=1

bl

F̄0(Wl+1(Si))exp(β

T Zi) − F̄0(Wl(Si))exp(β
T Zi)
1−εi

δi , (8)

which does not involve any integration, and is mathematically more tractable than (2).

2.4. Maximum likelihood estimation

We assume that the parameters k and x1, x2, . . . , xk of the function π are known. The likelihood (8) involves the
unspecified baseline survival function F̄0, apart from other unknown parameters β and η = (b1, b2, . . . , bk)T . Since the
factors in the product likelihood are probabilities of various intervals, it is clear that estimation of F̄0 would amount to
assignment of probabilities to various intervals that would act as basic units. If an appropriate set of intervals (including
single points that can be regarded as degenerate intervals) are identified, then the values of F̄0 at the requisite points can be
expressed as sums of probabilities of these intervals. Therefore, we need a systematic identification of these intervals.

The likelihood (8) involves probabilities assigned to intervals of the type [t, tmax] and (t, tmax], as per the baseline
probability distribution F̄0. Since these intervals have overlap, we express them as unions of smaller, disjoint intervals. Let
I1, I2 and I3 be sets of indices i (between 1 and n) that satisfy the conditions δi = 0, δiεi = 1 and δi(1−εi) = 1, respectively.
The set I1 contains indices of subjects for whom the event is yet to happen till the time of observation, I2 contains indices
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of subjects who have experienced the event and remember the date of occurrence, while I3 is the set of indices of subjects
who have experienced the event but forgotten the date. Consider the intervals

Ai = (Si, tmax] for i ∈ I1;

Ai = [Ti, tmax] for i ∈ I2;

A′

i = (Ti, tmax] for i ∈ I2;

Ail =


(Wl(Si), tmax], l = 1, . . . , k,
[Wl(Si), tmax], l = k + 1, for i ∈ I2 ∪ I3

(9)

and the sets

A1 = {Ai : i ∈ I1};

A2 = {Ai \ A′

i : i ∈ I2};

A3 = {A′

i : i ∈ I2};

A4 = {Ai(l+1) \ Ail : 1 ≤ l ≤ k and i ∈ I3}.

(10)

As the baseline distribution is absolutely continuous, the elements of A2 and A3 are all distinct with probability 1. Let
n2 be the number of elements of I2. The elements of A2 are singletons; we arrange them in increasing order, and
denote them as B1, B2, . . . , Bn2 . We also arrange the elements of A3 in the corresponding order and denote them as
Bn2+1, Bn2+2, . . . , B2n2 . We then collect the unique elements of A1 ∪ A4 that are distinct from B1, B2, . . . , B2n2 , and denote
them as B2n2+1, B2n2+2, . . . , BM . Observe that the collection B1, B2, . . . , BM consist of the distinct elements ofA1∪A2∪A3∪

A4, arranged in a particular order. Denote the non-empty subsets of the index set {1, 2, . . . ,M} by s1, s2, . . . , s2M−1. Define

Ir =


i∈sr

Bi


i∉sr

Bc
i


for r = 1, 2, . . . , 2M

− 1. (11)

Some of the Ir ’s may be empty sets, denoted here by φ. Let

C = {sr : Ir ≠ φ, 1 ≤ r ≤ 2M
− 1}. (12)

It can be verified that all the non-empty Ir ’s are distinct and disjoint. Let A be the class of all sets Ir such that sr ∈ C.
Note that each of the intervals B1, . . . , BM is a union of disjoint sets that are members of A. For any Borel set A, suppose

P0(A) is the probability assigned to A as per the baseline probability distribution corresponding to the survival function F̄0.
Let pr = P0(Ir), for Ir ∈ A. Then the likelihood (8) reduces to

L =


i∈I1

 
k r:Ir⊆Ai

sr∈C

pr


exp(βT Zi)

×


i∈I2


1 −

k
l=1

blI

Ti ∈ Ai(l+1) \ Ail


·


 

r:Ir⊆Ai
sr∈C

pr


exp(βT Zi)

−

 
r:Ir⊆A′

i
sr∈C

pr


exp(βT Zi)



×


i∈I3

 k
l=1

bl


 

r:Ir⊆Ai(l+1)
sr∈C

pr


exp(βT Zi)

−

 
r:Ir⊆Ail
sr∈C

pr


exp(βT Zi)


 . (13)

Thus, maximizing the likelihood (8) is equivalent tomaximizing the likelihood (13)with respect to β, η and the set of pr ’s
with sr ∈ C. The pr ’s are nuisance parameters when the main objective is to estimate β . The number of these parameters
can be very high. This problem is simplified if it can be shown algebraically that some of the estimated pr ’s are zero. With
this goal, we consider the following subsets of C.

C1 = {s : s ∈ C; there is another element s′ ∈ C, such that s ⊂ s′},
C2 = {s : s ∈ C; there is another element s′ ∈ C, such that

s′ \ (s ∩ s′) consists of a singleton j and s \ (s ∩ s′) = {j + n2}},

C0 = C \ (C1 ∪ C2). (14)

The next result shows that the maximization of the likelihood can be restricted to C0.

Theorem 2. For fixed values of β and η, maximizing the likelihood (13)with respect to pr for sr ∈ C is almost surely equivalent
to maximizing it with respect to pr for sr ∈ C0, i.e.,

max
pr :pr∈[0,1],


sr∈C pr=1

L = max
pr :pr∈[0,1],


sr∈C0

pr=1
L.



138 S. Mirzaei Salehabadi, D. Sengupta / Computational Statistics and Data Analysis 92 (2015) 134–147

Let us relabel the intervals Ij, sj ∈ C0, by J1, J2, . . . , Jv . Further, let qj = P(Jj) for j = 1, 2, . . . , v. Theorem 2 implies that
maximizing the likelihood (13) is almost surely equivalent to maximizing

L(q1, . . . , qv, η, β) =


i∈I1


j:Jj⊆Ai

qj

exp(βT Zi)

×


i∈I2


1 −

k
l=1

blI

Ti ∈ Ai(l+1) \ Ail



·




j:Jj⊆Ai

qj

exp(βT Zi)

−


j:Jj⊆A′

i

qj

exp(βT Zi)


×


i∈I3

 k
l=1

bl


 

j:Jj⊆Ai(l+1)

qj

exp(βT Zi)

−


j:Jj⊆Ail

qj

exp(βT Zi)

 . (15)

with respect to q1, q2, . . . , qv, η and β , subject to the restriction
v

j=1 qj = 1.
In order to maximize the likelihood (15), we need to identify the sets Jj, j = 1, . . . , v, that is, the intervals Ij, sj ∈ C0,

defined through (11) and (14). This identification involves elaborate combinatorial calculations. In fact, simulations reported
in Mirzaei and Sengupta (2015) show (in the case of nonparametric estimation in the absence of covariates) that these
calculations consumemuch more computational time than the actual maximization. They have shown that the set of times
of exact recall can serve as a readily available and approximate support of the estimated baseline distribution, so that the
computational speed can be enhanced several times without sacrificing the quality of the solution substantially. In the next
section, we prove a similar result for the regression problem.

2.5. Approximate MLE

Let A0 = {J1, J2, . . . , Jv}, and A2 = {{Ti}, i ∈ I2} as already defined in (10). Further, let ni be the cardinality of
Ii, i = 1, 2, 3. The task of maximizing the likelihood (15) can be simpler for large n2, as the following result shows.

Theorem 3. The set A2 is contained in the set A0 almost surely. Further, if the inspection times take values from a finite set and
the range of values of βTZi in (15) is bounded, then the probability of A0 being equal to A2 goes to one as n2 → ∞.

One can form a computationally simpler estimator on the basis of Theorem 3. According to this theorem, the maximum
likelihood estimator has mass only at points of exact recall of the event, when n2 is large. In such a case, the likelihood (15)
involves Jj’s that are singletons only. Therefore, irrespective of the value of n2, one can maximize (15) with respect to point
masses corresponding to the times of exact recall.

Formally, let t1, . . . , tn2 be the ordered set of distinct ages at event that have been exactly recalled, and q∗

1, . . . , q
∗
n2 be

the probability masses allocated to them. Maximizing the likelihood (15), subject to the constraint that qj = 0 whenever
Jj ∉ A2, is equivalent to maximizing the following approximate likelihood subject to

n2
j=1 q

∗

j = 1 and q∗

j ≥ 0:

La(q∗

1, . . . , q
∗

n2 , η, β)

=


i∈I1

 
j:tj>tmi

q∗

j

exp(βT Zi)
i∈I2


1 −

k
l=1

blI

Ti ∈ Ai(l+1) \ Ail


·


 

j:tj>tmi

q∗

j

exp(βT Zi)

−

 
j:tj>tmi

q∗

j

exp(βT Zi)


×


i∈I3

 k
l=1

bl


 

j:tj>tmi(l+1)

q∗

j

exp(βT Zi)

−

 
j:tj>tmil

q∗

j

exp(βT Zi)

 (16)

wheremi = inf{j : tj ∈ Ai} for i ∈ I1 ∪ I2, and,mil = inf{j : tj ∈ Ail}, l = 1, 2, . . . , k for i ∈ I3.
In order to remove the range restriction on the parameters q∗

1, . . . , q
∗
n2 , we use the reparametrization γd = log(− log

(


j:tj≥td
q∗

j )), d = 1, 2, . . . , n2. Thus, the approximate likelihood (16) can be expressed as

La(γ , η, β) =


i∈I1


e−eZiβ+γmi


×


i∈I2


1 −

k
l=1

blI

Ti ∈ Ai(l+1) \ Ail


·


e−eZiβ+γmi 

−

e−e

Ziβ+γmi+1 

×


i∈I3


k

l=1

bl


e−e

Ziβ+γmi(l+1) 
−

e−eZiβ+γmil  (17)
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where γ = (γ1, . . . , γn2+1) and γn2+1 = ∞. The log of the above expression simplifies to

ℓa(γ , η, β) =

n
i=1

log


n2
j=1

αij


e(−eZiβ+γj )

− e(−eZiβ+γj+1 )


(18)

where, for j = 1, 2, . . . , n2, we have

αij =



I

Jj ⊆ Ai


if i ∈ I1,

1 −

k
l=1

bl · I

Ti ∈ Ai(l+1) \ Ail


· I

Jj ⊆ Ai \ A′

i


if i ∈ I2,

k
l=1

bl · I

Jj ⊆ Ai(l+1) \ Ail


if i ∈ I3.

(19)

We obtain the approximate maximum likelihood estimate (AMLE) of the parameters γ , η and β by maximizing the above
approximate log-likelihood. The first and second derivatives of ℓa(γ , η, β)with respect to γ and β are as given below.

∂ℓa(γ , η, β)

∂bl
=

n
i=1

n2
j=1

gij
t
αitgit

ξijl

∂ℓa(γ , η, β)

∂γj
=

n
i=1

µijhij for j = 1, . . . , n2,

∂ℓa(γ , η, β)

∂βk
=

n
i=1

n2
j=1
αij

hij − hij+1


xik

l
αilgil

for k = 1, 2, . . . , r, (20)

where gij =


e(−eZiβ+γj )

− e(−eZiβ+γj+1 )

, µij =


αij−1 − αij


/


t αitgit ,

ξijl = −I

Ti ∈ Ai(l+1) \ Ail


· I

Jj ⊆ Ai \ A′

i


I

i ∈ I2


+ I

Jj ⊆ Ai(l+1) \ Ail


· I

i ∈ I3


,

and

hij =

e−eZiβ+γj 

(−eZiβ+γj) for j = 1, 2, . . . , n2.

−∂2ℓa/∂γj∂γk =


n

i=1

µijµikhijhik if j ≠ k,

n
i=1

−µijdij + (µijhij)
2 if j = k,

−∂2ℓa/∂βk∂βl = −

n
i=1

xikxil



j
αij(dij − dij+1)

t
αitgit

−



j
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t
αitgit


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
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where dij =

e−eZiβ+γj 

−eZiβ+γj

+

e−eZiβ+γj 

−eZiβ+γj
2

for j = 1, 2, . . . , n2. A Newton–Raphson iteration can be used to

compute the AMLEs γ̂ , η̂, β̂ . The corresponding AMLE of the baseline distribution function ˆ̄F 0 is

ˆ̄F 0(t) =


j:tj≥t

q̂∗

j . (21)

3. Simulation study of small sample performance

For the purpose of simulation, we generate samples of time-to-event from a relative risk regression model with survival
function F̄i(t) = [F̄0(t)]exp(β

T Zi), where the baseline distribution function F0(t) is Weibull with shape and scale parameters
α = 11 and β = 13, respectively, and discard the samples lying outside the interval [8, 16]. This truncated distribution has
median 11.57. The vector of covariates, Z = (Z1, Z2), consists of a binary variable, taking values 1 and 0 with probabilities
0.25 and 0.75, and a continuous variable having the uniform distribution over the interval [0, 5]. We choose the vector
of regression coefficients as β = (β1, β2) = (1.5, 1.5). The ‘time of interview’ is generated from the discrete uniform
distribution over the set of integers {7, 8, . . . , 21}. These choices are in line with the data analytic example of the next
section, where the time to landmark event is the age at menarche in years. As for the forgetting probability π , we use
(5) with k = 7, x1 = 0, x2 = 1.7, x3 = 3.4, x4 = 5.1, x5 = 6.8, x6 = 8.5 and x7 = 10.2 and the vector parameter
η = (b1, b2, . . . , b7) = (0.01, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15).

The approximate log-likelihood (18) is maximized with respect to γ , β and η, subject to the constraint that the elements
of η are nonnegative and in non-decreasing order.

As a benchmark of performance, one can consider the hypothetical situation when all the event times are perfectly
recalled, that is, the data are right censored. In this case, one can use theMLE obtained bymaximizing Cox’s partial likelihood.
We refer to this estimator based on ‘complete recall’ data as the ‘complete recall MLE’. On the other hand, if one uses only
the ‘current status’ information, namely whether the event of interest has happened till the time of interview, then the
corresponding likelihood is

n
i=1


F̄ exp(βT Zi)
0 (Si)

1−δi
·


1 − F̄ exp(βT Zi)

0 (Si)
δi
,

which canbemaximizedwith respect toβ and the values of F̄0 at the possible times of inspection (namely, the integers 7–21).
We refer to this estimator as the ‘current status MLE’. Another option is to use the recalled event time whenever available,
but to disregard the informativeness of the censoring. A penalized version of the corresponding likelihood is maximized in
the function shr of the SmoothHazard package of R, which fits the Cox model by using an approximation of the hazard
function by a linear combination of M-splines. We refer to this estimator as the ‘SmoothHazard MLE’.

We now compare the performance of the proposed AMLE of the regression coefficients with the three estimators
described above. Table 1 shows the bias, the standard deviation (Stdev) and the mean squared error (MSE) of the estimated
regression coefficients. The results reported here are based on 500 simulation runs for sample sizes n = 50, 200 and 1000.
It is clear that the standard deviation of the proposed AMLE, as well as its mean square error, is larger than those of the
(hypothetical) ‘complete recall MLE’, but smaller than the ‘current status MLE’. The gap between the performances of the
first two estimators becomes small as the sample size increases, though the gap between the AMLE and the ‘current status
MLE’ does not reduce asmuch. The ‘SmoothHazardMLE’ has a persistent bias evenwhen n is large. This outcome is expected,
as the estimator is based on the assumption that the censoring is non-informative. Thus, neither the ‘current statusMLE’ nor
the ‘SmoothHazard MLE’ is able to successfully utilize the information contained in the recalled time-to-event data, while
the proposed AMLE is able to do so.

Figs. 1 and 2 show the plots of the empirical bias and the empirical standard deviation of the estimated baseline survival
functions, for n = 50, 200 and 1000. It is clear that the empirical bias as well as the empirical standard deviation of the
estimated baseline survival function become smaller as the sample size increases.

We now turn to the problem of testing for the significance of the estimators of the regression coefficients. The standard
theory of parametric estimation generally does not hold for an infinite dimensional nuisance parameter. However, in the case
of the Cox regression model for randomly right censored data, it has been shown that an asymptotic theory based on partial
likelihoodworks in an analogousmanner to that based on the asymptotic theory of parametric likelihood (Andersen andGill,
1982), and that the partial likelihood may be viewed as the full likelihood maximized with respect to the baseline hazard
subject to a piecewise linear constraint (Johansen, 1983). We now run some simulations to check whether the likelihood
(18) with the nuisance parameters F̄0 replaced by the estimator (21) can be used similarly to obtain an approximate test of
significance of the regression coefficients, even though there is no asymptotic theory as yet to justify such an approximation.

The ‘score vector’ (borrowing terminology of parametric likelihood theory) based on ∂ℓa(γ ,η,β)
∂β

, can be written as

U =

n
i=1

n2
j=1

αij


ˆ̄F(tj) log( ˆ̄F(tj))−

ˆ̄F(tj+1) log( ˆ̄F(tj+1))


Zi

l
αilgil

. (22)
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Table 1
Bias, Stdev and MSE of estimated regression coefficients.

Estimator Property n = 50 n = 200 n = 1000
β1 β2 β1 β2 β1 β2

Complete Bias 0.2981 −0.0734 0.0089 0.0037 −0.0026 0.0008
Recall Stdev 0.8321 0.8499 0.1293 0.5048 0.0848 0.2271
MLE MSE 0.7812 0.7277 0.0168 0.2548 0.0072 0.0515

Proposed Bias 0.2593 −0.0547 0.0105 −0.0047 0.0083 −0.0011
AMLE Stdev 1.3145 1.2913 0.1739 0.5057 0.0885 0.2272

MSE 1.7904 1.6658 0.0303 0.2553 0.0079 0.0516

Current Bias −0.392 −0.3316 −0.026 −0.0367 −0.0032 0.0010
Status Stdev 1.4048 1.3405 0.3225 0.9847 0.2353 0.6113
MLE MSE 2.1271 1.9069 0.1047 0.9709 0.0553 0.3737

Smooth- Bias −0.170 3.551 −0.310 2.841 0.191 1.782
Hazard Stdev 0.740 1.739 0.322 0.850 0.123 0.219
MLE MSE 0.569 15.648 0.198 8.780 0.0505 3.250

Fig. 1. Empirical bias of the estimated baseline survival function with n = 50, 200 and 1000.

Fig. 2. Empirical standard deviation of estimated baseline survival function with n = 50, 200 and 1000.

The relevant part of the ‘information matrix’ is V = A22 − A21A−1
11 A12, where

A =


A11 A12
A21 A22


,

A11 = −


∂2ℓa/∂γ ∂γ

T ∂2ℓa/∂γ ∂η
T

∂2ℓa/∂η∂γ
T ∂2ℓa/∂η∂η

T


,

A12 = −

∂2ℓa/∂γ ∂β

T ∂2ℓa/∂η∂β
T 

= AT
21,

and

A22 = −∂2ℓa/∂β∂β
T ,
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Table 2
The empirical type I error probability of test H0 : β = 0.

Asymptotic n = 50 n = 200 n = 1000

Type I error 0.041 0.038 0.022

Table 3
Estimated regression coefficients and their p-values.

Covariates Estimated value p-value

Father passed high school 0.091 0.0036
Mother passed high school 0.249 0.0061
Monthly family expenditure (Rupees) 0.0002 0.0047

the quantities being estimated at β = 0, γ = γ̂0 and η = η̂0, the restricted AMLE’s at β = 0. The hypothesis β = 0 may
be tested by taking UTV−1U as an approximate χ2 statistic with 2 degrees of freedom. In order to check the behavior of
this statistic, we generate data of sizes n = 50, 200 and 1000 for 1000 runs, under the null hypothesis when the baseline
distribution function F0(t) is the Weibull distribution with shape and scale parameters α = 11 and β = 13, respectively,
truncated to the interval [8, 16], The vector of covariates, Z = (Z1, Z2), consists of a binary variable, taking values 1 and 0with
probabilities 0.25 and 0.75, and a continuous variable having the uniform distribution over the interval [0, 5]. Table 2 shows
the value of empirical type I error probability of this test for different sizes of data. It can be seen that the error probability
is less than 0.05. This indicates that the ‘score test’ is somewhat conservative, and more so for larger sample size.

4. Data analysis

In this section, we illustrate the use of the proposedmethodwith data collected from an anthropometric study conducted
by the Biological Anthropology Unit of the Indian Statistical Institute in and around the city of Kolkata, India from 2005
to 2011 (ISI, 2012, p. 108). In this retrospective data set, individuals aged between 7 and 21 years were surveyed through
stratified sampling among students of educational institutions sampled at the first stage. The subjects, stratified by age year,
were interviewed on or around their birthdays. The data set contains age, measurement of body dimensions, menarcheal
status, age at menarche (if recalled), and some socioeconomic information. We used a part of this data set, and regarded
the onset of menarche as the landmark event. Whenever the subject reported having had menarche but could not recall the
date exactly, we regarded it as a case of non-recall.

There are many studies concerning the effects of socioeconomic factors on the measures of body shape (anthropometric
indices or ratios) and physical maturation (e.g., biological parameters of the adolescent growth spurt) of children. Some of
the important factorswhich affect age atmenarche (maturation in girls) are diet and physical activitieswhich can be directly
related to parents’ education and monthly family expenditure (Khan et al., 1996; Padez, 2003; Aryeetey et al., 2011). We
considered three socioeconomic variables: two binary variables indicating whether the father or the mother of the subject
had passed high school, and a real variable representingmonthly family expenditure in Indian Rupees (indexedwith respect
to 2008 as base year).

We considered a subset of the original data, consisting of 673 respondents who came from a nuclear family and were
the only child of their respective parents. Among 673 samples, 241 individuals did not have menarche, 147 individuals
had menarche and recalled the date of its onset, while 285 individuals had menarche but could not recall the date. There
were 492 individuals with father having passed high school and 420 individuals with mother having passed high school.
The median of monthly family expenditure was Rupees 7808. As for the forgetting probability π , we modeled it over the
interval 0–13 years (maximum possible separation between menarcheal age and age at observation in the sample). We
used a piecewise constant model, with k = 8 and equal length of the intervals over which the probability is constant. The
computational method for AMLE was as described in Section 3.

Table 3 shows the estimated regression coefficients and the corresponding p-values. It is found that all the coefficients
are significant at the 1% level. The vector of the three regression coefficients has p-value 0.00093.

Fig. 3 shows a plot of the estimated survival functions of four hypothetical subjects with covariate profiles described
below.

Case (a) Neither parent passed high school, monthly family income is equal to the median income of the group (Rs. 7808).
We represent this case as Z = (0, 0, 7808).

Case (b) Only the father passed high school, monthly family income is equal to the median income of the group. We
represent this case as Z = (1, 0, 7808).

Case (c) Both the parents passed high school, monthly family income is equal to the median income of the group. We
represent this case as Z = (1, 1, 7808).

Case (d) Both the parents passed high school, monthly family income is equal to Rupees 10,000. We represent this case as
Z = (1, 1, 10 000).
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Fig. 3. Estimated survival function in different cases.

Fig. 4. Estimated baseline survival function with different k.

Fig. 5. Estimated π function with different k.

It is clear that the fact of any parent having passed high school is associated with earlier maturation. In particular, the
mother’s educational status is found to account for a greater reduction of the survival function. Also, even a small increase
in the monthly family expenditure is found to have a considerable impact on the survival function of the age at menarche.

The chosen value of k was obtained after considering a coarser and a finer partition for the piecewise constant model of
π . Specifically, the range 0–13 years was split experimentally into k equal intervals, with k = 4, 8 and 16, and the resulting
estimated baseline survival functions were compared. Fig. 4 shows plots of the estimated baseline survival function for
different values of k. It is seen that by increasing k from 4 to 8, one observes a substantial change in the estimated baseline
survival function, though the change is much less when k is increased from 8 to 16. The integrated mean square difference
between baseline survival functions (scaled by the integral of the square of the function for the lower value of k) is 0.92when
one compares k = 4 with k = 8. The same criterion produces the value 0.021 when the comparison is between the curves
for k = 8 and k = 16. We have chosen k = 8, as the alternative choice k = 16 does not produce a substantially different
estimate of the baseline survival function. Fig. 5 shows the estimated function π for different values of k. Once again, the
estimates of π for k = 8 and k = 16 differ much less than those for k = 4 and k = 8.
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5. Concluding remarks

In this paper, we have presented a method for fitting the Cox regression model to recall-based time-to-event data with
covariates,where there is informative censoring. Simulation results indicate that the estimators of the regression coefficients
are reasonable, though there is noproof of consistency of these estimators as of now. Itmaybe recalled that there is no known
proof of consistency of MLEs of the Cox regression parameters even in the case of non-informatively interval-censored data.
Some results are available in the special case of status data with fixed and multiple inspection times (and in particular, for
the further special case of current status data) (Huang, 1996; Yu et al., 2006; Liu and Shen, 2009). The problemof establishing
consistency may be considered in future.

Fitting of a semi-parametric regression model is generally a more complex inferential problem than that of estimating
only a distribution. The complexity in the present case is even greater because the informative interval censoringmodel leads
to a large number of nuisance parameters, including the probability masses allocated, as per the baseline distribution of the
Cox model, to intersections of different intervals. The tasks of formation of these intervals and tracking of their probability
masses are greatly simplified by the approximation inspired by Theorem 3. The Cox regressionmodel appears to be suited to
the formulation of the approximate likelihood through masses at the times of exactly recalled events. It is this matching of
themodels thatmakes theAMLE computationally tractable. A different approachmaybeneeded for other regressionmodels.

The proposed approach can be adapted to handle left truncated data. Assuming that there is a time of left truncation
associated with each observation, each term in the likelihood would have to be divided by the upper tail probability at the
point of truncation. It can be shown that the simplification given through Theorem 2 will continue to hold, since the shift
of mass envisaged in the proof of that theorem does not alter the factors in the denominator. The objective function (18)
would then be replaced by

ℓa(γ , η, β) =

n
i=1

log


n2
j=1

αij


e(−eZiβ+γj )

− e(−eZiβ+γj+1 )


− log


n2
j=1

ψije(−eZiβ+γj )


, (23)

where ψij’s are known constants like αij’s. The optimization problem is therefore similar.
The data set analyzed in Section 4 also contains ‘partial’ recall data relating to the week/month/year of menarche. In this

paper,wehave regarded adate as not recalled at all evenwhen a range of possible dates is available. Apart fromsimplification
of the problem, this strategy also minimizes errors in recall, which has been recognized as a problematic issue with recall
data (Rabe-Hesketh et al., 2001; Wen and Chen, 2014). If reliability of partial recall data is not an issue, one might look for
more sophisticated modeling to handle it. The work presented in this paper can be used as a point of departure for analysis
under such models. Another direction of future research could be extension of this model to include frailty. Methodology
for other forms of regression models, such as the accelerated failure time model, may be developed also.
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Appendix

A.1. Proof of Theorem 1

Without loss of generality, we assume that a possible value of z is the 0 vector (this can be always achieved through a
shift of origin, the effect of which can be absorbed through the baseline survival function). For the sake of contradiction, let
us assume there are two values of the triplet (β, F̄0, π), say (β1, F̄01, π1) and (β2, F̄02, π2), such that their substitutions on
the right hand side of (4) produce the same function. Then we have, for all z and s and all positive v < s,

−
d
dv


F̄01(s − v)exp(β

T
1 z)

(1 − π1(v)) = h(v, 1|s, z;β)

= −
d
dv


F̄02(s − v)exp(β

T
2 z)

(1 − π2(v)).

Hence,

d
dv


F̄01(s − v)exp(β

T
1 z)


d
dv


F̄02(s − v)exp(β

T
2 z)
 =

1 − π2(v)

1 − π1(v)
∀ z, s, v < s, (A.1)
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i.e.,

exp(βT
1 z)F̄01(s − v)exp(β

T
1 z)−1f01(s − v)

exp(βT
2 z)F̄02(s − v)exp(β

T
2 z)−1f02(s − v)

=
1 − π2(v)

1 − π1(v)
∀ z, s, v < s. (A.2)

In particular, the above identity holds for z = 0, i.e.,

f01(s − v)

f02(s − v)
=

1 − π2(v)

1 − π1(v)
∀ s, v < s. (A.3)

After combining the above equation with (A.2), we obtain

F̄01(s − v)exp(β
T
1 z)−1

F̄02(s − v)exp(β
T
2 z)−1

= exp((β2 − β1)
T z) ∀ z, s, v < s. (A.4)

By taking the limit of the left hand side as v goes to s, we obtain exp((β2 − β1)
T z) = 1, i.e.,

βT
2 z = βT

1 z ∀ z. (A.5)

Since the above equation holds for r linearly independent values of the vector z (as assumed in the statement of the theorem),
we have

β1 = β2. (A.6)

It follows from Eqs. (A.4) and (A.5) that
F̄01(s − v)

F̄02(s − v)

exp(βT1 z)−1

= 1 ∀ z, s, v < s. (A.7)

Therefore,

F̄01 = F̄02. (A.8)

From Eqs. (A.1), (A.6) and (A.8), we have

π1(v) = π2(v) ∀ v, (A.9)

i.e.,

(β1, F̄01, π1) = (β2, F̄02, π2),

which is a contradiction.

A.2. Proof of Theorem 2

Since C is the union of disjoint sets C0 and C1 ∪ C2, we can rewrite the likelihood (13) as

L =


i∈I1

 
r:Ir⊆Ai
sr∈C0

pr +


r:Ir⊆Ai

sr∈C1∪C2

pr


exp(βT Zi)

×


i∈I2


1 −

k
l=1

blI

Ti ∈ Ail



·


 

r:Ir⊆Ai
sr∈C0

pr +


r:Ir⊆Ai

sr∈C1∪C2

pr


exp(βT Zi)

−

 
r:Ir⊆A′

i
sr∈C0

pr +


r:Ir⊆A′

i
sr∈C1∪C2

pr


exp(βT Zi)



×


i∈I3

 k
l=1

bl


 

r:Ir⊆Ai(l+1)
sr∈C0

pr +


r:Ir⊆Ai(l+1)
sr∈C1∪C2

pr


exp(βT Zi)

−

 
r:Ir⊆Ail
sr∈C0

pr +


r:Ir⊆Ail

sr∈C1∪C2

pr


exp(βT Zi)


 . (A.10)

For every sr ∈ C2, there exists a unique sr∗ ∈ C0 such that sr∗ \ sr∗ ∩ sr = {jr} and sr \ sr∗ ∩ sr = {n2 + jr} for some
integer jr in between 1 and n2, where n2 is as defined after (10). If any probability mass is shifted from Ir to Ir∗ , the likelihood
(A.10) can possibly be affected only through terms that involve the sets Bjr and Bn2+jr , defined in (11). Given the fact that the
baseline distribution is absolutely continuous, there is almost surely a unique ir ∈ I2 such that Bjr = Air \ A′

ir = {Tir } and
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Bn2+jr = A′

ir . The individual indexed by ir is the only one whose contribution to the likelihood is affected by the change. For
this individual, Ir∗ ⊂ Bjr ⊆ Air , but Ir∗ ⊈ A′

ir . On the other hand, Ir ⊆ Bn2+jr = A′

ir ⊆ Air . Therefore, the first exponentiated
term in the second line of (A.10) remains the same after the shift of mass, while there is a reduction in the subtracted term
in that line. The likelihood increases as a result.

We now turn to shifting of probability mass out of Ir , where sr ∈ C1. For any such sr , define the non-empty set
Csr = {s′ : s′ ∈ C0, sr ⊂ s′}. If Csr is a singleton, we denote the only member by sr∗ . If Csr is not a singleton, we denote by
sr∗ that member which satisfies the condition: ‘for all β ∈ ∪j: sj∈Csr ;sj≠sr∗ Ij, there is a real number α ∈ Ir∗ such that α < β ’.
Thus, for every sr ∈ C1, we have a uniquely defined sr∗ ∈ C0.

If pr is increased at the expense of pr∗ , the likelihood (A.10) can possibly change only through terms that involve sets
Bj such that j ∈ sr∗ \ sr . We shall show that for an individual i, whose contribution to the likelihood involves such sets,
that contribution generally increases due to the said shift of probability mass. In a particular case (Case (iii) below), where
this shift cannot be proved to increase the likelihood, there is another way of shifting mass out of pr that would definitely
increase the likelihood.

Case (i) Let j ∈ sr∗ \ sr and Bj = Aij for some ij ∈ I1. Any shift of probability mass from Ir to Ir∗ would increase the
contribution of the ijth individual to the likelihood, since Ir∗ ⊆ Aij but Ir ⊈ Aij .

Case (ii) Let j ∈ sr∗ \sr and Bj = Aij \A
′

ij
for some ij ∈ I2. In this case, Ir∗ ⊆ Aij but Ir∗ ⊈ A′

ij
. By construction, Bn2+j = A′

ij
, which

is disjoint with Bj. In order that Ir∗ is not a null set, we must have n2 + j ∉ sr . It follows that Ir is not contained in Bj or
Bn2+j. Thus, Ir ⊈ Aij and Ir ⊈ A′

ij
. Clearly, a transfer of probability mass from Ir to Ir∗ would increase the contribution

of the ijth individual to the likelihood.
Case (iii) Let j ∈ sr∗ \ sr and Bj = A′

ij
for some ij ∈ I2. Since j ∉ sr , we have Ir ⊆ Bc

j = [tmin, Tij). Therefore, for each of the
intervals Bl with l ∈ sr , Bl ∩ [tmin, Tij) ≠ φ. On the other hand, since Ir∗ ≠ φ, we have Bl ∩ (Tij , tmax] ≠ φ for l ∈ sr . It
follows that each of the intervals Bl, l ∈ sr , contains a left- and a right-neighborhood of the point Tij . Consequently, Tij
is contained in these intervals. Hence, the set srĎ = {l : Tij ∈ Bl} is a superset of sr contained inC0, with IrĎ = {Tij} ≠ φ.
As argued in Case (ii), a transfer of probability mass from Ir to IrĎ would increase the contribution of the ijth individual
to the likelihood.

Case (iv) Let j ∈ sr∗ \ sr and Bj = Aij(l+1) \ Aij l for some l ∈ {1, . . . , k} and some ij ∈ I3. A transfer of probability mass
from Ir to Ir∗ would increase the contribution of the ijth individual to the likelihood. This is because of the fact that
Ir∗ ⊆ Aij(l+1) and Ir∗ ⊈ Aij l, whereas Ir is not contained in either of these sets.

It transpires that maximization of L can be achieved even in the presence of the constraint pr = 0 for sr ∈ C1 ∪ C2. Thus,
L can be fully maximized over the restricted set {pr : sr ∈ C0}.

A.3. Proof of Theorem 3

Let i ∈ I2 and the index ji be such that sji = {j : Ti ∈ Bj}. Since each time-to-event has an absolutely continuous distribu-
tion, the recalled times Ti, i ∈ I2 are distinct with probability 1. Therefore, {Ti} ∈ {B1, B2, . . . , Bn2} almost surely. It follows
that Ti ∈ Iji ⊆ {Ti}, i.e., Iji = {Ti} with probability 1. It is also easy to see that sji does not belong to C1 or C2, with probability
1. Therefore, sji ∈ C0 and hence A2 ⊆ A0 almost surely.

Let Jj ∈ A0 \ A2. There is an index r such that Ir = Jj ≠ φ and sr ∈ C0, even though Ir ≠ {Ti} for any i ∈ I2. We shall
show that the existence of Ir implies an event with probability going to zero.

It is easy to see that i ∉ sr for i = 1, 2, . . . , n2. Thus, Ir can be written as

Ir =


i∈sr

Bi


i∉sr

Bc
i


= I ′r \ {Ti, i ∈ I2} ,

where

I ′r = Lr


Rr , Lr =


i∈sr

Bi


, Rr =

 
i∉sr ,i>n2

Bc
i


.

If there is an i ∈ I2 such that Ti ∈ I ′r , then the index set sr∗ = sr ∪ {i} corresponds to the non-null set Ir∗ = {Ti}. It follows
that sr ∈ C1, which leads to the contradictory conclusion sr ∉ C0. Therefore Ti ∉ I ′r for any i ∈ I2.

We now show that an upper bound of the probability of the above event goes to zero as n2 → ∞. Since the set Lr is
obtained as an intersection of sets of the form (Si, tmax], (Ti, tmax], (Wl(Si), tmax] or [tmin, tmax], the intersection itself must be
an interval of the form (lr , tmax]. On the other hand, since the setRr is obtained as an intersection of sets that are complements
of sets of the above type, the intersection itselfmust be an interval of the form [tmin,mr ]. Thus, the set I ′r is the interval (lr ,mr ].
By the argument given in the preceding paragraph, neither lr normr is equal to Ti for any i ∈ I2 (otherwise sr would not be in
C0). Therefore, both lr andmr are of the form Si for some i ∈ I1 or of the form Si −xl for some i ∈ I3 and some l ∈ {1, . . . , k}.

Letw1 < w2 < · · · < wK be the feasible values of Si and Si − xl (where 1 ≤ l ≤ k) that are strictly between tmin and tmax.
Since the baseline distribution is absolutely continuous, we have 1 > F̄(w1) > F̄(w2) > · · · > F̄(wK ) > 0. The values of lr
and mr are taken from the setw1, w2, . . . , wK .
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The probability of the event ‘‘Ti ∉ I ′r for any i ∈ I2’’ is
i∈I2


1 −


F̄ exp(βT Zi)(lr)− F̄ exp(βT Zi)(mr)


=


i∈I2


1 −


F̄ B(lr)

exp(βT Zi)/B
+

F̄ B(mr)

exp(βT Zi)/B
,

where B is an upper bound on exp(βTZi). Since uexp(βT Zi)/B is a strictly concave function of u, we have

1 − (1 − u2 + u1)
exp(βT Zi)/B < uexp(βT Zi)/B

2 − uexp(βT Zi)/B
1

for 0 < u1 < u2 < 1. Using this inequality for u1 = F̄ B(mr) and u2 = F̄ B(lr), we have
i∈I2


1 −


F̄ exp(βT Zi)(lr)− F̄ exp(βT Zi)(mr)


<

i∈I2


1 − F̄ B(lr)+ F̄ B(mr)

exp(βT Zi)/B
<

1 − F̄ B(lr)+ F̄ B(mr)

n2L/B
,

where L is a lower bound on exp(βTZi). Since [1 − F̄ B(wj1) + F̄ B(wj2)] ∈ (0, 1) for any j1 and j2 with 1 ≤ j1 < j2 ≤ K , we
have [1 − F̄ B(lr)+ F̄ B(mr)] ∈ (0, 1). Therefore, the last expression goes to zero as n2 → ∞. This completes the proof.
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